Convergence of a Kinetic Equation to a Fractional Diffusion Equation
نویسنده
چکیده
The understanding of thermal conductance in both classical and quantum mechanical systems is one of the fundamental problems of non-equilibrium statistical mechanics. A particular aspect that has attracted much interest is the observation that autonomous translation invariant systems in dimensions one and two exhibit anomalously large conductivity. The canonical example here is a chain of anharmonic oscillators introduced by Fermi-Pasta-Ulam (FPU)[13], for which numerical evidence shows a super-diffusive spreading of energy (see [19] for a general review). However, the rigorous analysis of energy transport mechanism presents serious mathematical difficulties and few results are obtained starting from microscopic dynamics. The canonical approach to this problem, starting with the pioneering work of Peierls [23] for the case of weak non-linearity, is to derive a Boltzmann-type equation that will describe the energy transport in a kinetic limit. Recently, this approach was carried out rigorously for weakly anharmonic FPU chains [24, 1, 21]. A linear Boltzmann equation was derived in [20] for the harmonic chain with random masses. The same linear Boltzmann equation appears also as limit of a random Schrödinger equation (see for example [11], [10], [25], [2]). In [3] a kinetic limit was performed for a system of harmonic oscillators perturbed by a conservative stochastic noise and the following linear Boltzmann equation is deduced for the the energy density distribution of the normal modes, or phonons, characterized by a wave-number k ∈ [−1/2, 1/2]:
منابع مشابه
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملFractional diffusion limit for a stochastic kinetic equation
We study the stochastic fractional diffusive limit of a kinetic equation involving a small parameter and perturbed by a smooth random term. Generalizing the method of perturbed test functions, under an appropriate scaling for the small parameter, and with the moment method used in the deterministic case, we show the convergence in law to a stochastic fluid limit involving a fractional Laplacian.
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کامل